Для стального ступенчатого бруса построить эпюры

Построить эпюры продольных сил и нормальных напряжений по длине бруса | Интерактивное сообщество — Решение задач по инженерной графике

Двух ступенчатый стальной брус нагружен силами:

F1=20 кН; F2=10 кН; F3=5 кН.

Площади поперечных сечений бруса: A1=1,8 см2; A2=3,2 см2.

a=0,2 м. Принять E=2х100000 Н/мм2, [σ]=160 МПа.

Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение конца бруса.

Построить эпюры продольных сил и нормальных напряжений по длине бруса

Оцените сложность задачи:

0 голосов, средняя сложность: 0.0000

Решения задачи

Двух ступенчатый стальной брус нагружен силами: F1=20 кН; F2=10 кН; F3=5 кН. Площади поперечных сечений бруса: A1=1,8 см2; A2=3,2 см2. a=0,2 м. Принять E=2х100000 МПа, [σ]=160 МПа. Построить эпюры продольных сил, нормальных напряжений. Определить перемещение конца бруса.

Двух ступенчатый стальной брус нагружен силами: F1=20 кН; F2=10 кН; F3=5 кН. Площади поперечных сечений бруса: A1=1,8 см2; A2=3,2 см2. a=0,2 м. Принять E=2х100000 Н/мм2. Построить эпюры нормальных сил и напряжений по длине бруса. Определить перемещение конца бруса.

Брус закреплен в стене — закрепление заделка. Сечения бруса круглой формы

$ S = frac{πd^{2}}{4} $

Находим диаметры ступеней бруса.

$ d = sqrt{frac{4S}{π}} $

$ d_{1}=15,14 мм; d_{2}=20,19 мм $

Делим брус на участки нагружения (части бруса
между внешними силами) — участки 1, 2 и 3.

Используем метод сечений для определения
внутренних силовых факторов, действующих на каждом
участке (при этом внутренние силы переходят в разряд
внешних):

Участок 1. Проецируем силы действующие на участок на ось х и составляем уравнение равновесия

$ ΣF_{x} = 0; -F_{3}+N_{1}=0; N_{1}=F_{3}=5 кН $

Продольная сила N1 положительна. Участок 1 сжат.

Участок 2. Проецируем силы действующие на участок на ось х и составляем уравнение равновесия

$ ΣF_{x} = 0; -F_{3}-F_{2}+N_{2}=0; N_{2}=F_{3}+F_{2}=5+10=15 кН $

Продольная сила N2 положительна. Участок 2 сжат.

Участок 3. Проецируем силы действующие на участок на ось х и составляем уравнение равновесия

$ ΣF_{x} = 0; -F_{3}-F_{2}+F_{1}+N_{2}=0; N_{3}=5+10-20=-5 кН $

Продольная сила N3 отрицательна. Участок 3 растянут.

Определяем величины нормальных напряжений по сечениям с учетом изменения площади поперечного сечения. Четыре участка по напряжениям:

$ σ_{1} =frac{N_{1}}{A_{1}}=frac{5×10^{3}}{1,8×100}=27,8 frac{Н}{мм^{2}}=27,8 МПа $

$ σ_{2} =frac{N_{2}}{A_{1}}=frac{15×10^{3}}{1,8×100}=83,3 МПа $

$ σ_{3} =frac{N_{2}}{A_{2}}=frac{15×10^{3}}{3,2×100}=46,9 МПа $

$ σ_{4} =frac{N_{3}}{A_{2}}=frac{5×10^{3}}{3,2×100}=15,6 МПа $

Строим эпюры продольных сил и эпюру нормальных напряжений, полагая растягивающие напряжения положительными.

Эпюра продольных сил показывает изменение внутреннего силового фактора по длине бруса: участки I, II и III испытывают деформацию сжатия; участок IV испытывает деформацию растяжения.

Эпюра нормальных напряжений показывает их изменение по длине бруса. Наиболее
опасным участком является участок II. Так как нормальные напряжения на нем максимальны по величине σII=83,3 МПа

Проверяем прочность бруса работающего на растяжение — сжатие:

по условию прочности $ |σ_{max}=83,3 МПа|≤[σ=160 МПа] $

Прочность обеспечена.

На каждом участке определяем абсолютную деформацию (удлинение или сжатие):

$ ∆ℓ_{1} = frac{σ_{1}L_{1}}{E}=frac{-27,8×10^{3}×0,2}{200×10^{3}}=-0,028 мм $

$ ∆ℓ_{2} = frac{σ_{2}L_{2}}{E}=frac{-83,3×10^{3}×0,2}{200×10^{3}}=-0,083 мм $

$ ∆ℓ_{3} = frac{σ_{3}L_{3}}{E}=frac{-469×10^{3}×0,4}{200×10^{3}}=-0,094 мм $

$ ∆ℓ_{4} = frac{σ_{4}L_{4}}{E}=frac{156×10^{3}×0,2}{200×10^{3}}=0,016 мм $

Суммарное удлинение бруса (перемещение свободного конца)

$ ∆ℓ=∆ℓ_{1}+∆ℓ_{2}+∆ℓ_{3}+∆ℓ_{4}=-0,189 мм $

Чтобы предложить решение пожалуйста войдите или зарегистрируйтесь

Источник

Построение эпюр продольных сил — формулы, условия и примеры решения задач

Построение эпюр продольных сил – это решение статически определимой задачи. Производится для выявления картины нагрузки упругого тела. Вернее, уточнения ее схематизации.

Необходимо для определения наиболее напряженного, так называемого «опасного» сечения. Затем методами сопромата (сопротивления материалов) проводится анализ с прогнозированием перемещений элементов конструкции.

Но всему свое время. Сначала немного о терминах.

Основные понятия

Брусом (балкой) называют тело, вытянутое вдоль оси. То есть длина преобладает над шириной и высотой.

Если имеются только осевые (продольные) силы, то объект подвергается растяжению/сжатию. В этом случае в материале возникают только нормальные поперечному сечению силы противодействия и тело считают стержнем.

Статическая определимость подразумевает достаточность схемы для установления внутренних усилий противодействия. Участок – часть балки с неизменным сечением и характерной нагрузкой.

Правила построения учитывают знаки усилий. Растягивающие принимают положительными, сжимающие – отрицательными.

В системе СИ силы измеряются в ньютонах (Н). Длины в метрах (м).

Что такое эпюра продольных сил

Показывает, какой силой (в нашем предположении нормальной) загружен каждый участок. По всей длине стержня. Иначе говоря, эпюра – наглядное графическое изображение изменения нагрузки по всей длине конструкции.

Как построить эпюру продольных сил

Используется метод сечений. Балка виртуально рассекается на каждом участке и ищется противодействующая N. Ведь задача статическая. 

Сопротивление рассчитывается по формуле:

где:

  • Fl – действующие на участке l силы (Н);

  • ql – распределенные нагрузки (Н/м).

Порядок построения:

1. Рисуется схема балки и механизмов закрепления;

2. Производится разделение на участки;

3. Для каждого рассчитывается N с учетом знаков. Если у балки есть незакрепленный конец, то начинать удобнее именно с него. В противном случае считается реакция опор. И оптимальнее выбирать сечение с меньшим количеством действующих факторов:

Нетрудно заметить, что последнее уравнение дает еще и реакцию опоры;

4. Параллельно оси стержня намечается база эпюры. Положительные значения масштабировано проставляются выше, отрицательные – ниже. Эпюру наглядно совмещать с расчетной схемой. Итоговый результат и промежуточные сечения показаны на рис. 1.

Рис. 1. Эпюра продольных сил

Рассмотрим случай:

F1 = 5 (кН);

F2 = 3 (кН);

F3 = 6 (кН).

Вычислим:

Проверить эпюру можно по скачкам: изменения происходят в точках приложения сил на их величину.

Пример построения эпюр и решения задач

Построить эпюру сил для следующего случая (рис. 2):

Рис. 2

Дано:

Решение.

Разбиение на участке вполне очевидно. Найдем сопротивление на выделенных:

Распределенная нагрузка зависит от длины, на которой приложена. Поскольку нарастает линейно, значение N2 будет постепенно увеличиваться/уменьшаться в зависимости от знака q.

Эпюра такого вида усилия представляет собой прямоугольный треугольник с катетами l3 и ql3 (в масштабе). Поскольку распределение линейно.

По полученным данным строим эпюру (рис. 3).

Рис. 3

Заключение

Приведенный алгоритм является предварительным этапом в расчете модели на прочность. «Слабое» место находится уже с учетом площади поперечного сечения.

В сети имеются онлайн сервисы для помощи в расчетах при вычерчивании. Но стоит ли ими пользоваться, если процедура настолько проста? Если не запутаться в знаках, конечно. Это самая распространенная ошибка.

Источник

Ступенчатый брус нагружен вдоль оси двумя силами

Примеры решения задач

Ступенчатый брус нагружен вдоль
оси двумя силами. Брус защемлен с левой стороны (рис. 20.6). Пренебрегая весом
бруса, построить эпюры продольных сил и нормальных напряжений.

Для стального ступенчатого бруса построить эпюры

Рис. 20.6 Перемещения поперечных сечений брусьев в статически определимых
задачах

Решение

Определяем
участки нагружения, их два.

Определяем продольную силу в сечениях 1 и 2.

Строим
эпюру.

Рассчитываем величины нормальных напряжений и строим
эпюру нормальных
напряжений в собственном произвольном масштабе.

1. Определяем продольные
силы.

Сечение 1.
– N1 + F1 = 0; N1 = F1 = 100 кН.

Сечение 2. — 80 — N2 + 100 = 0; N2 = 100
— 80 = 20 кН.

В обоих сечениях продольные силы положительны.

2.
Определяем нормальные напряжения .

Сопоставляя участки нагружения с границами изменения
площади, видим, что образуется 4 участка напряжений. Нормальные напряжения в сечениях
по участкам:

; ;


.

Откладываем значения напряжений
вверх от оси, т. к. значения иx положительные (растяжение). Масштаб эпюр продольной
силы и нормальных напряжений выбирается отдельно в зависимости от порядка цифр
и имеющегося на листе места.

Читайте также:  Построить дом из бруса один этаж своими руками


Растяжение и сжатие.

 Продольные
и поперечные деформации.

Закон Гука

Иметь представление о продольных
и поперечных деформация! и их связи.

Знать закон Гука, зависимости и формулы
для расчета напряжений и перемещений.

Уметь проводить расчеты на прочность
и жесткость статически определимых брусьев при растяжении и сжатии.

Деформации
при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной
силы F (рис. 21.1).

Для стального ступенчатого бруса построить эпюры

Рис. 21.1

Начальные размеры бруса: lo – начальная длина, ао — начальная ширина.

Брус
удлиняется на величину Δl; Δl — абсолютное удлинение. При растяжении
поперечные размеры уменьшаются, Δа — абсолютное сужение; Δl > 0;
Δа < 0.

При сжатии выполняется соотношение Δl < 0; Δа
> 0.

В сопротивлении материалов принято рассчи-

тывать
деформации в относительных единицах:

;
ε — относительное удлинение;

;
ε’ – относительное сужение.

Между продольной и поперечной деформациями
существует зависимость

ε’ = με,

где μ — коэффициент
поперечной деформации, или коэффициент Пуассона, -характеристика пластичности
материала.

Закон Гука

В пределах упругих деформаций деформации прямо
пропорциональны нагрузке:

F = kΔl,

где F — действующая нагрузка;
k — коэффициент.

В современной форме:


.

Получим зависимость σ=Eε,
где Е — модуль упругости, характеризует жесткость материала.

В пределах
упругости нормальные напряжения пропорциональны относительному удлинению.

Значение
Е для сталей в пределах (2÷2,l) • 105 МПа.

При прочих равных условиях,
чем жестче материал, тем меньше он деформируется:

.

Формулы
для расчета перемещений поперечных

сечений бруса при растяжении и сжатии

Используем
известные формулы.

Закон Гука σ=Eε.

Откуда .

Относительное удлинение .

В результате получим зависимость между нагрузкой,
размерами бруса и возникающей деформацией:

;
;

 
или ,

где Δl — абсолютное удлинение,
мм;

σ — нормальное напряжение, МПа;

/ — начальная длина, мм;

Е
— модуль упругости материала, МПа;

N — продольная сила, Н;

А — площадь
поперечного сечения, мм2;

Произведение АЕ называют жесткостью сечения.

Выводы

Абсолютное
удлинение бруса прямо пропорционально вели
чине продольной силы в сечении,
длине бруса и обратно пропорционально площади поперечного сечения и модулю упругости.

Связь
между продольной и поперечной деформациями завис
от свойств материала, связь
определяется коэффициентом Пуассона, называемом коэффициентом поперечной деформации.

Коэффициент
Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0: у резины μ
= 0,5.

3. Поперечные деформации меньше продольных и редко влияют
на
работоспособность детали; при необходимости поперечная деформация рассчитывается
через продольную.

; ; откуда Δа = ε’а0 ,

где
Δа — поперечное сужение, мм; ао — начальный поперечный размер, мм.

4. 
Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях
на растяжение по диаграмме растяжения (рис. 21.2).

Для стального ступенчатого бруса построить эпюры

Рис. 21.2

При работе пластические деформации не должны возникать, упругие деформации
малы по сравнению с геометрическими размерами тела. Основные расчеты в сопротивлении
материалов проводятся в зоне упругих деформаций, где действует закон Гука.

На
диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1.

5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой
(не нарушающей работоспособности бруса) называют расчетом на жесткость.

Примеры
решения задач

Дана схема нагружения и размеры бруса до деформации (рис.
21.3). Брус защемлен, определить перемещение свободного конца.

Решепие

1. 
Брус ступенчатый, поэтому следует построить эпюры продольных сил и нормальных
спряжений.

Делим брус на участки нагружения, определяем продольные силы,
строим эпюру продольных сил.

2. Определяем величины нормальных напряжений
по сечениям с учетом изменений площади поперечного сечения.

Строим эпюру
нормальных напряжений.

3. На каждом участке определяем абсолютное удлинение.
Результаты алгебраически суммируем.

Примечание. Балка защемлена, в заделке
возникает неизвестная реакция в опоре, поэтому расчет начинаем со свободного конца
(справа).

1. Два участка нагружения:

участок 1: N1 = + 25 кН; растянут;

участок
2: 25 – 60 + N2 = 0; N2 = — 35 кН; сжат.

2. Три участка по напряжениям:

;
;

; ;

3. Удлинения участка (материал
– сталь Е = 2 · 105 МПа):


;


;


.

4. Суммарное удлинение
бруса (перемещение свободного конца).

Δl = Δl2 + Δl3 ;

Δl
=0,125 + 0,05 – 0,07 = 0,105 мм.

Для стального ступенчатого бруса построить эпюры

Рис. 21.3

Источник

Задача 3. Расчёт статически неопределимого ступенчатого бруса — КиберПедия

При растяжение (сжатие)

Для статически неопределимого бруса с жёстко защемлёнными концами, нагруженного продольной нагрузкой как показано на схеме к задаче 3 необходимо:

1. Построить эпюры продольных сил N, нормальных напряжений и перемещений ;

2. Подобрать величину площади поперечных сечений всех участков бруса методом допускаемых нагрузок,

Необходимые данные для решения задачи взять из таблицы 1.3.

Схемы к задаче 3

Схемы к задаче 3

Схемы к задаче 3

Таблица 1.3

Вариант Усилия Длины участков
Р, кН q,кН/м l1, м l2, м l3, м
27 12 2 0,5
35 24 1,2 1,9 0,8
53 46 1,3 1,8 1
29 10 1,4 1,7 1,1
37 22 1,5 1,2 1,2
45 32 1,6 1,4 2
10 30 1,7 1 1,8
15 18 1,8 1,1 1,5
25 20 1,9 1,2 1,2
50 44 2 0,8 1

Пример решения задачи 3

Для ступенчатого бруса (см. рис. 1.5а) построить эпюры продольных сил N, нормальных напряжений и перемещений ; подобрать величину площади поперечных сечений всех участков бруса методом допускаемых нагрузок если Р1=3Р; Р2=2Р.

Решение

Задача один раз статически неопределима в силу плоской системы сил, действующих по одной прямой, для которой как известно можно составить только одно уравнение равновесия:

,

в котором два неизвестных: и .

Отбросим правую опору, заменив её действие на брус реакцией .

Перемещение сечения в точке В равно нулю, т.к. это сечение жёстко заделано. Используя принцип независимости действия сил, получим уравнение совместности деформаций:

Распишем эти деформации по закону Гука:

,

отсюда, после сокращения на а и EF, кН.

Рис. 1.5 Расчётная схема и эпюры для примера решения задачи 3

В соответствии с расчётной схемой рис. 1.5б аналитические зависимости N, и будут следующими:

Участок 1

кН ; ; .

Подставим в уравнение для перемещения два крайних значения , после подстановки будем иметь:

.

Участок 2

кН; ; .

Подставляя пределы получим:

.

Участок 3

кН; ; .

Подставляя пределы получим:

.

На основании данных аналитических зависимостей строим эпюры N, и (рис. 1.5 в, г,д).

Построение эпюры перемещений может служить проверкой правильности решения задачи. Перемещение на участке 1 при z1=0 равно нулю, перемещение на участке 3 при z=a также должно равняться нулю, т.к. эти два сечения соответствуют жёсткому закреплению бруса, перемещения которых невозможны.

2. На эпюре нормальных напряжений найдём максимальное напряжение: .

Для определения площади поперечного сечения воспользуемся условием прочности по нормальным напряжениям:

.

Приравняв максимальное нормальное напряжение к допускаемому, определим площадь поперечного сечения F:

.

Таким образом, на участке 1 площадь поперечного сечения должна быть , а на участке 2 в два раза больше, т.е. .

Плоский изгиб

Изгиб называется плоским, если плоскость действия изгибающей нагрузки проходит через главную центральную ось инерции сечения.

Если изгибающий момент Mx является единственным внутренним силовым фактором, то такой изгиб называется чистым. При наличии поперечной силы изгиб называется поперечным.

Брус, работающий при изгибе, называется балкой.

Построение эпюр поперечной силы Qyи изгибающего момента Mx является одним из основных этапов при расчете конструкций на изгиб. По эпюрам Qy и Mx определяется опасное сечение, т.е. сечение в котором может произойти разрушение.

Опасным сечением называется сечение, в котором изгибающий момент достигает наибольшего по модулю значения .

В некоторых случаях опасным сечением может быть также сечение, где наибольшего значения достигает поперечная сила .

Между поперечной силой и изгибающим моментом существует следующая зависимость:

,

то есть первая производная от изгибающего момента по длине участка равна поперечной силе.

Это соотношение в общем виде было получено Журавским и носит название теоремы Журавского.

Читайте также:  Как построить эпюру напряжений в ступенчатом круглом брусе

На основании теоремы Журавского могу быть сформулированы правила проверки эпюр:

1. В точке приложения сосредоточенной силы на эпюре Qy должен быть скачок, равный по величине и знаку приложенной силе.

2. В точке приложения сосредоточенного момента на эпюре Mxдолжен быть скачок, равный по величине и по знаку приложенному моменту.

3. На участке, где приложена распределенная нагрузка, эпюра Qy является наклонной прямой (наклон по направлению действия нагрузки), а эпюра Mx — параболой, выпуклость которой направлена навстречу распределенной нагрузке.

4. На участках, где Qy > 0, Mx возрастает, на участках, где Qy< 0, Mx убывает, если Qy = 0 (эпюра пересекает нулевую линию), то эпюра Мx имеет экстремум.

5. В тех точках, где на эпюре Qy имеется скачок, на эпюре Мx будет излом.

6. Чем больше по модулю величина Qy , тем круче изменяется эпюра Мx.

7. На свободных концах балки изгибающий момент равен нулю.

Максимальное нормальное напряжение в балке возникает в сечении, где изгибающий момент достигает наибольшей по модулю величины, то есть в опасном сечении

.

Условие прочности при изгибе формулируется следующим образом: Балка будет прочной, если максимальные нормальные напряжения не превысят допускаемых напряжений



Источник

Расчет брусьев на растяжение-сжатие. Определение

Геометрических характеристик плоских сечений

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

Методические указания

к выполнению контрольной работы 1

по курсу «Сопротивление материалов» для студентов

специальностей 151001.65, 240801.65, 260601.65

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2009

ОБЩИЕ ПОЛОЖЕНИЯ

В элементах конструкций при действии внешних сил возникают внутренние силы упругости. При осевом растяжении (сжатии) стержня в его сечениях возникают только продольные силы N. Для их вычисления применяется метод сечений. Растягивающие продольные силы принято считать положительными, а сжимающие – отрицательными. Мерой внутренних сил является напряжение, оно характеризует интенсивность внутренних сил в точках сечения. При осевом растяжении (сжатии) стержня в его поперечных сечениях действуют только нормальные напряжения s. Знак s определяется знаком N. При растяжении стержня его длина увеличивается, а поперечные размеры уменьшаются. При сжатии – наоборот. В результате изменения длины стержня его сечения совершают линейные перемещения d вдоль продольной оси Z.

В задаче 1 проводится вычисление продольных усилий, нормальных напряжений в поперечных сечениях стержня, определение перемещений сечений стержня, а также построение соответствующих эпюр. Так как основной задачей расчета конструкции является обеспечение ее прочности в условиях эксплуатации, то также определяется коэффициент запаса прочности.

Стержни и стержневые системы, в которых внутренние усилия могут быть определены при помощи уравнений равновесия статики, называются статически определимыми. Стержни и системы, внутренние усилия в которых нельзя определить при помощи одних лишь уравнений статики, называются статически неопределимыми. Для их расчета необходимо рассмотреть систему в деформированном состоянии и составить дополнительные уравнения, связывающие перемещения элементов системы, Раскрытие статической неопределимости системы показано в задаче 2.

При центральном растяжении-сжатии и при чистом сдвиге прочность и жесткость стержня зависит от простейшей геометрической характеристики – площади поперечного сечения А. При других видах деформации, например, кручение и изгиб, прочность и жесткость стержня определяются не только площадью поперечного сечения стержня, но и формой сечения. Поэтому для расчета на прочность и жесткость в этих случаях приходится использовать более сложные геометрические характеристики сечений: статические моменты – Sx и Sy; моменты инерции: осевые Jx и Jy, центробежный Jxy, полярный Jp; моменты сопротивления: осевые Wx и Wy, полярный Wp. В задаче 3 определяются геометрические характеристики плоского сечения стержня, состоящего из двух прокатных профилей.

РАСЧЕТ СТУПЕНЧАТОГО БРУСА НА РАСТЯЖЕНИЕСЖАТИЕ

Для ступенчатого стального бруса (рис. 1, а), выполненного из стали марки Ст. 3, имеющей предел текучести sТ = 240 МПа, модуль Юнга
E = 2×105 MПа, требуется:

1. Построить по длине бруса эпюры продольных сил N, нормальных напряжений s и перемещений поперечных сечений d.

2. Вычислить коэффициент запаса прочности бруса n.

Проведем ось z, совпадающую с осью бруса. Направление оси выбираем произвольно. Брус жестко защемлен верхним концом в опоре, в которой возникает опорная реакция R. Направление вектора реакции выбираем произвольно. Величину опорной реакции найдем из уравнения равновесия статики:

∑ FZ = 0; R – F1 + F2 = 0; R = F1 — F2 == 24 кН.

Разделим брус на силовые участки. Границами участков являются поперечные сечения бруса, проходящие через точки приложения внешних нагрузок и сечения, в которых изменяется площадь поперечного сечения бруса. Точки пересечения оси бруса и граничных сечений обозначим буквами B, C, D, K. Получим 3 участка бруса.

Используем метод сечений. На каждом участке проводим сечения I-I,
II-II, III-III. При этом одну из частей бруса (более сложную) мысленно отбрасываем и к плоскости сечения оставшейся части бруса прикладываем вектор продольной силы N в направлении внешней нормали к сечению. Рассматриваем равновесие оставшейся части бруса (рис. 2).

Уравнения равновесия статики на каждом участке запишутся:

на первом участке BC (рис. 2, а) ∑ FZ = 0; R – N1 = 0; N1 = R = 24 кН;

на втором участке CD (рис. 2, б) ∑ FZ = 0; R – N2 = 0; N2 = R = 24 кН;

на третьем участке DK (рис. 2, в) ∑ FZ = 0; N3 + F2 = 0; N3 = — F2 = — 42 кН.

Проведем вертикальную линию (рис. 1, б), параллельную оси y и отложим от нее в выбранном масштабе на каждом участке вдоль этой линии положительные значения продольной силы вправо, а отрицательные влево. Получим эпюру продольных сил N (рис. 1, б).

Определим нормальные напряжения σ, МПа, на каждом участке бруса по формуле

где N, Н – продольная сила на данном участке; А, м2 – площадь поперечного сечения данного участка.

На первом участке BC

На втором участке CD

На третьем участке DK

Проведем вертикальную линию (рис. 1, в), параллельную оси y и отложим в выбранном масштабе на каждом участке вдоль этой линии положительные значения нормальных напряжений вправо, а отрицательные влево. Получим эпюру нормальных напряжений σ.

Найдем удлинения ∆ℓ, м, участков бруса по формуле

,

где N, Н – продольная сила на данном участке; ℓ, м — длина данного участка; Е, МПа – модуль Юнга материала бруса на данном участке; А, см2 – площадь поперечного сечения данного участка.

На первом участке ВС

.

На втором участке CD

.

На третьем участке DK

.

Определим перемещения сечений бруса, проходящих через границы участков. Перемещение сечения, проходящего через точку В равно нулю, так как в жесткой заделке нет перемещений, т. е. δВ = 0.

Между точками B и C находится первый участок. Перемещение сечения C будет равно δC = δВ + ∆ℓ1 = 0 + 0,72 · 10-4 = 0,72 · 10-4 м.

Между точками C и D находится второй участок. Перемещение сечения D будет равно δD = δC + ∆ℓ2 = 0,72 · 10-4 + 0,8 · 10-4 = 1,52 · 10-4 м.

Между точками D и K находится третий участок. Перемещение сечения D будет равно δK = δD + ∆ℓ3 = 1,52 · 1,8 · 10-4 = -1,28 · 10-4 м.

Отложим в выбранном масштабе на граничных сечениях положительные значения перемещений сечений вправо, а отрицательные влево. Получим эпюру перемещений сечений бруса δ (рис. 1, г).

Найдем коэффициент запаса прочности бруса по формуле

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ

СТЕРЖНЕВОЙ СИСТЕМЫ

Абсолютно жесткий брус (рис. 3) закреплен с помощью шарнирно-неподвижной опоры и двух стержней и нагружен силой Q. Требуется:

1. найти усилия и напряжения в стержнях, выразив их через силу Q;

Читайте также:  Сколько и чего нужно чтобы построить дом 6 8 из бруса

2. из расчета по допускаемым напряжениям найти допускаемую нагрузку [Q], приравняв большее из напряжений в двух стержнях допускаемому напряжению [σ] = 160 МПа;

3. из расчета по допускаемым нагрузкам найти предельную грузоподъемность системы и допускаемую нагрузку QДОП, если предел текучести σТ = 240 МПа и запас прочности n = 1,5;

4. сравнить величины [Q] и QДОП, полученные при расчете по допускаемым напряжениям и допускаемым нагрузкам.

 

 

Рис. 4 Рис. 5

(1)

Составлять уравнения и не имеет смысла, так как в них войдут не интересующие нас реакции опоры О (R3, R4). Таким образом, мы убеждаемся еще раз, что задача статически неопределима (в единственное уравнение статики (1) входят две неизвестные силы N1 и N2; нагрузку Q в этом уравнении считаем заданной).

Для составления дополнительного уравнения рассмотрим деформацию системы. Под действием нагрузки Q абсолютно жесткий брус CD, оставаясь прямым, повернется вокруг шарнира О и займет положение C1D1 (рис.6). Точка В опишет дугу, которую вследствие малости угла С1ОС заменим хордой ВВ1. Величина ВВ1 представляет собой удлинение второго стержня = ВВ1. Так как упругие деформации малы по сравнению с длинами стержней, то считают, что угол между абсолютно жестким брусом CD и ВК не изменился, то есть . Из рис. 3 следует, что a = 45°. При этом стержни 1 и 2 удлиняются соответственно на величины и .

 

Рис. 6

Удлинение стержня 1 () получаем на чертеже, опустив перпендикуляр ВМ из точки В на КВ1 (положение стержня 1 после деформации).

Из прямоугольного треугольника ВВ1М (рис.6) следует, что

(2)

На основании закона Гука (отрезок МВ1) и (отрезок ВВ1). При составлении этих выражений следует соблюдать соответствие направления нормальных сил N1 и N2 деформациям стержней 1 и 2. В данном случае стержни 1 и 2 растягиваются и силы N1 и N2 – растягивающие.

Условие совместности деформаций (2) перепишется так

(3)

Из рис. 3 видно, что — длина стержня 1; ℓ 2 = в – длина стержня 2. Тогда выражение (3) получает вид

(4)

Так как a = 45°, то получаем: N1 = N2. Решая совместно уравнения (1) и (4), получаем

N1 = N2 = 0,488 · Q.

После определения усилий N1 и N2 находим величины нормальных напряжений s1 и s2 в стержнях 1 и 2:

Определим допускаемую силу [Q]. из расчета по допускаемым напряжениям. Так как s2 > s1, то состояние второго стержня более опасно. Поэтому для определения допускаемой силы [Q]. следует приравнять напряжение во втором стержне s2 допускаемому напряжению [s] = 160 МПа.

(кН/м2)

244 [Q]. = 160 · 103 ; [Q]. = кН.

Допускаемая нагрузка [Q]. = 655,74 кН.

Определим допускаемую силу QДОП. из расчета по допускаемым нагрузкам. Напряжение во втором стержне оказалось больше, чем в первом, то есть s2 > s1. При увеличении силы Q напряжение во втором стержне достигнет предела текучести раньше, чем в первом. Когда это произойдет, напряжение во втором стержне не будет некоторое время увеличиваться, система станет как бы статически определимой, нагруженной силой Q и усилием во втором стержне

.

При дальнейшем увеличении силы напряжение в первом стержне также достигнет предела текучести. Усилие в этом стержне будет равно

Запишем уравнение равновесия статики для такого состояния системы

где sТ = 240 МПа – предел текучести материала.

Из этого уравнения находим предельную грузоподъемность системы

кН.

Допускаемая нагрузка QДОП определится так

кН,

где n = 1,5 – коэффициент запаса прочности.

Сравнивая полученные результаты, видим, что допускаемая нагрузка QДОП, определенная из расчета по допускаемым нагрузкам, больше допускаемой нагрузки [Q], из расчета по допускаемым напряжениям в

раза.

Способ расчета по допускаемым нагрузкам для статически неопределимых систем позволяет вскрыть дополнительные резервы прочности, повысить несущую способность системы и указывает на возможность более экономного расходования материала.

Рассмотрим пример на определение геометрических характеристик плоского сечения. Сечение (рис. 7) состоит из швеллера № 30 и равнополочного уголка 100х100х10. Требуется:

1. Определить положение центра тяжести поперечного сечения.

2. Найти осевые и центробежный моменты инерции относительно случайных осей (XC и YC), проходящих через центр тяжести.

3. Определить положение главных централь­ных осей u и v.

4. Найти моменты инерции относительно главных центральных осей.

5. Вычертить сечение в масштабе 1 : 2 и указать на нем все размеры в числах и все оси.

Выпишем из таблиц сортамента все данные, необходимые для расчёта, и схематично зарисуем профили элементов сечения (рис. 8).

Швеллер № 30 по ГОСТ 8240-89. Площадь А = 40,50 см2. Моменты инерции относительно собственных центральных осей: Jх = 5810,0 см4,
Jу = 387,0 см4, Jху=0. Так как одна из осей является осью симметрии, то оси будут главными и центробежный момент относительно них равен нулю. Центр тяжести расположен на расстоянии z0 = 2,52 см от стенки швеллера.

Уголок равнополочный 100х100х10 по ГОСТ 8509-86. Площадь
А = 19,24 см2. Моменты инерции Jх = Jу = 178,95 см4, см4, см4. Расстояние от центра тяжести уголка до наружных граней полок z0 = 2,83 см. Угол между осями Х и Х0 равен 45º. Для дальнейшего расчёта понадобится величина центробежного момента инерции уголка Jху. Её можно вычислить по формуле

Так как для равнополочного уголка 45º, то sin 2 = sin 90º = 1.

Знак центробежного момента инерции уголка выбирается в соответствии с рис. 9. При положениях уголка (рис.9, а) и (рис.9, б) центробежный момент инерции отрицательный, а при положениях уголка (рис.9, в) и (рис.9, г) центробежный момент инерции положительный.

Прежде чем приступить к дальнейшему расчёту, необходимо с соблюдением масштаба (в задании задачи – это масштаб 1:2) начертить сечение,
(рис.Так как сечение состоит из 2 элементов, пронумерованных цифрами I, II, необходимо ввести соответствующие индексы в обозначении центров тяжестей (01, 02), центральных осей x1, y1, x2, y2 и соответствующих моментов инерции. Из рис. 10 видно, что центральные оси швеллера x1 и y1 соответствуют осям y и x швеллера на рис. 8. Соответственно поменяются местами осевые моменты инерции швеллера.

Определим координаты центра тяжести сечения относительно вспомогательных осей x и y (рис. 10). Оси удобно провести так, чтобы все сечение располагалось в первом квадрате. Найдём координаты центров тяжести элементов в системе осей x и y. Из рис. 10 видно, что О1(15;2,52), О2(22,17;3,48). Координаты центра тяжести сечения находятся по формулам:

;

.

В масштабе наносим точку С с координатами Хс=17,31 и Ус=2,82 см на расчётную схему и проводим через т. С оси xс и yс, параллельные осям x и y. Находим координаты центров тяжестей О1 и О2 элементов в полученной системе координат xсСyс.

Пользуясь формулами связи между координатами точки относительно параллельных осей координат, получим:

см;

см;

см;

см.

Для проверки правильности нахождения координат центра тяжести сечения найдём статистические моменты всего сечения относительно центральных осей xс и yс. Известно, что статические моменты сечения относительно центральных осей должны быть равны нулю:

см3;

см3.

Близкие к нулю значения Sx и Sy показывают, что координаты центра тяжести сечения найдены правильно. Отличие их от нуля – накопленная погрешность вычисления.

Определим осевые и центробежный моменты инерции сечения относительно произвольных центральных осей xсyс. Используем формулы зависимостей между моментами инерции относительно параллельных осей:

;

;.

Определим направление главных центральных осей u и v. Тангенс угла наклона главных центральных осей u и v к произвольным центральным осям xс и yс определяется по формуле

.

По найденному значению тангенса с помощью таблиц или калькулятора находим значение угла , откуда . Положительный угол откладывается от оси xс против хода часовой стрелки и определяет положение одной из главных центральных осей – u. Вторая главная центральная ось – v перпендикулярна оси u.

Покажем на расчётн?