Как построить эпюру вращающих моментов для бруса

Построение эпюр крутящих моментов

Для определения напряжений и деформаций вала необходимо знать значения внутренних крутящих моментов Mk (Mz) в поперечных сечениях по длине вала. Диаграмму, показывающую распределение значений крутящих моментов по длине бруса, называют эпюрой крутящих моментов. Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала.

В простейшем случае, когда вал нагружен только двумя внешними моментами (эти моменты из условия равновесия вала ΣMz=0 всегда равны друг другу по величине и направлены в противоположные стороны), как показано на рис. 5.1, крутящий момент Mz в любом поперечном сечении вала (на участке между внешними моментами) по величине равен внешнему моменту |M1|=|M2|.

Рис. 5.1

В более сложных случаях, когда к валу приложено несколько внешних моментов, крутящие моменты Mk в поперечных сечениях различных участков вала неодинаковы.

На основании метода сечений крутящий момент в произвольном поперечном сечении вала численно равен алгебраической сумме внешних скручивающих моментов, приложенных к валу по одну сторону от рассматриваемого сечения.

При расчетах на прочность и жесткость знак крутящего момента не имеет никакого значения, но для удобства построения эп. Mk примем следующее правило знаков: крутящий момент считается положительным, если при взгляде в торец отсеченной части вала действующий на него момент представляется направленным по ходу часовой стрелки (рис.5.2).

В технике употребляется терминология « винт с правой нарезкой» или «…с левой нарезкой…», причем правый винт наиболее распространен, являясь стандартом. Полезно заметить, что при навинчивании гайки на правый винт мы прикладываем положительный момент Mкр , а при свинчивании гайки – отрицательный.

Рис. 5.2

При наличии распределенной моментной нагрузки m (рис.5.3) крутящие моменты МК связаны дифференциальной зависимостью

из которой вытекает следующая формула:

где – крутящий момент в начале участка.

Согласно формуле (5.2) на участках с равномерно распределенной нагрузкой m крутящий момент изменяется по линейному закону. При отсутствии погонной нагрузки (m = 0) крутящий момент сохраняет постоянное значение (МК = МКо = const). В сечениях, где к валу приложены сосредоточенные скручивающие моменты, на эпюре МК возникают скачки, направленные вверх, если моменты направлены против часовой стрелки, либо вниз – при обратном направлении моментов.

Рис. 5.3

На рис. 5.4, а изображен стержень, жестко защемленный в правом концевом сечении, к которому приложены три внешних скручивающих момента.

Рис. 5.4

В нашем случае крутящие моменты в их поперечных сечениях удобно выражать через внешние моменты, приложенные со стороны свободного конца бруса.

Это позволяет определять крутящие моменты, не вычисляя реактивного момента, возникающего в заделке.

Крутящий момент Mz1 в сечении I численно равен M1=200 нм и, согласно принятому правилу знаков, положителен.

Крутящий момент Mz2 в сечении II численно равен алгебраической сумме моментов M1 и M1, т.е. Mz2 =200-300=-100 нм, а его знак зависит от соотношения этих моментов.

Аналогичным образом вычисляется крутящий момент Mz3 в сечении III: Mz3 =200-300+500=400 нм.

Изменение крутящих моментов по длине вала покажем с помощью эпюры крутящих моментов. На рис. 5.4, б показана такая эпюра для стержня, изображенного на рис. 5.4, а.

Каждая ордината эп. Mk в принятом масштабе равна величине крутящего момента, действующего в том поперечном сечении бруса, которому соответствует эта ордината.

В сечении, в котором к брусу приложен внешний скручивающий момент, ордината эпюры изменяется скачкообразно на величину, равную значению этого момента.

Следует учитывать, что наибольший внешний скручивающий момент, приложенный к брусу, не всегда равен наибольшему крутящему моменту, по которому ведется расчет бруса на прочность и жесткость.

Пример 1.

Построить эпюру крутящих моментов для жестко защемленного стержня (рис.5.4.1, а).

Рис.5.4.1

Решение.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил.

1. Намечаем характерные сечения.

2. Определяем крутящий момент в каждом характерном сечении.

3. По найденным значениям строим эпюру (рис.5.4.1, б).

Пример 2.

Рассмотрим расчетную схему ва­ла, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: т (рис. 5.4.2).

Рис. 5.4.2. Построение эпюры внутренних крутящих моментов:

а – расчетная схема; б – первый участок, левая часть; в – второй участок, левая часть;

г – третий участок, правая часть; д – эпюра внутренних крутящих моментов

Решение.

В исходных сечениях 1–1; 2–2; 3–3 задаются положительными зна­чениями внутренних крутящих мо­ментов М1, М2, М3. Пусть .

Читайте также:  Построить дом из бруса своими руками на свайный фундамент

Для первого участка (рис. 5.4.2, б):

ΣMk = M1 + M = 0;

M1 = –M = ml = const.

Для второго участка (рис. 5.4.2, в):

Для третьего участка (рис. 5.4.2, г):

Границы измерения параметра х3 в следующей системе координат:

Тогда

Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис. 5.4.2, д).

Пример 3.

На рис. 5.4.3 дан пример определения по методу сечений внутренних крутящих моментов по участкам и внизу (ри.5.4.3, с) изображена суммарная эпюра Мкр.

Рис.5.4.3. a) заданный стержень с нагрузкой; b) отсеченные части стержня;

с) эпюра крутящих моментов.

Решение.

В данном случае для консольного стержня вести вычисления удобно, идя справа налево, начав их с 3–го участка.

Участок 3(рис. 5.4.3, b). Неизвестный момент Mкр3 прикладываем к отсеченной части как положительный, после чего пишем условие равновесия отсеченной части:

Σотсеч mz3=Mкр3 +5=0; → Mкр3 = -5 тм, (0≤z3 ≤2).

Участок 2(рис. 5.4.3, b). Положение сечения фиксируем с помощью местной координаты z2 :

Σотсеч mz2= Mкр2 +3(4-z2 ) -15 +5=0; → Mкр2 =10 – 3(4-z2), (0≤z2≤2).

Точка z2 =0, Mкр2 =10 – 12= -2 тм.

Точка z2 =4, Mкр2 =10 – 0= 10 тм.

Участок 1(рис. 5.4.3, b):

Σотсеч mz1= Mкр1 +3∙4+5+5-15=0; → Mкр1 = -7 тм, (0≤z1 ≤2).

Найдем реактивный момент в заделке M0 из условия равновесия всего стержня Σmz =0, это дает M0 +3∙4+5+5-15=0 и M0 = -7 тм, что совпадает с Mкр1 , найденным на участке 1 по методу сечений. Этого конечно следовало ожидать, так как по существу реактивный момент – это внутреннее усилие, действующее в поперечном сечении, где соединены торец стержня и заделка.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Техническая механика

Сопротивление материалов

Деформация кручения



Построение эпюр крутящих моментов

Для наглядного изображения распределения крутящих моментов вдоль оси бруса строят эпюры крутящих моментов — графическое отображение величины крутящих моментов на каждом участке бруса.

Крутящий момент в сечениях бруса определяется с помощью метода сечения. Так как равномерно вращающийся или неподвижный вал находится в равновесии, очевидно, что внутренние силы, возникающие в поперечном сечении, должны уравновешивать внешние моменты, действующие на рассматриваемую часть бруса. Отсюда следует, что крутящий момент в любом поперечном сечении численно равен алгебраической сумме внешних моментов, приложенных к брусу справа или слева от сечения.

Эпюры крутящих моментов дают возможность определить опасное сечение. В частности, если брус имеет постоянное поперечное сечение по всей длине, то опасными будут сечения на участке, где возникает наибольший крутящий момент.

Следует очень внимательно отнестись к определению знаков крутящего момента. Крутящий момент считается положительным, если при взгляде со стороны сечения результирующий момент внешних пар сил, приложенных к рассматриваемой части бруса, будет направлен против часовой стрелки, и наоборот (это положение условно и принимается для облегчения проверки расчетов, выполненных несколькими исполнителями).

Рассматривая величины крутящих моментов, действующих в каждом конкретном сечении бруса, полагаем, что в сечении, где приложен вращающий (скручивающий) момент, значения крутящего момента изменяются скачкообразно (принцип смягченных граничных условий).

***



Пример построения эпюры крутящих моментов

Силовая передача (трансмиссия), изображенная на рис. 2 состоит из вала, на котором размещены три шестерни — одна ведущая (А) и две ведомые (В и С).
построение эпюры крутящих моментов
К шестерням приложены вращающие моменты: РА= 300 Нм, РВ = 120 Нм, РС= 180 Нм.
Построим эпюру крутящих моментов для этой силовой передачи.

Решение

Очевидно, что свободные концы вала, (вращающиеся в подшипниках) не подвержены действию вращающих моментов, т. е. крутящие моменты на участках 1 и 4 равны нулю.
К шестерне А приложен вращающий момент 300 Н м, следовательно в сечении, расположенном под этой шестерней скачкообразно возникает крутящий момент, равный 300 Нм, и величина этого момента сохраняется неизменной по всем сечениям участка 2 (до шестерни В).

К шестерне В приложен вращающий момент 120 Нм, который направлен в противоположную сторону от ведущего скручивающего момента, приложенного к шестерне А. Следовательно крутящий момент на участке 3 будет равен разности крутящих моментов, приложенных к шестерням А и В. На эпюре это отобразится в виде ступени величиной 120 Нм, расположенной напротив сечения, где размещена шестерня В.
На всем протяжении участка 3 величина этого крутящего момента будет сохраняться неизменной, до сечения, расположенного под шестерней С.

К шестерне С приложен вращающий момент 180 Нм, направление которого противоположно моменту, приложенному к ведущей шестерне А, поэтому, начиная с сечения под шестерней С, крутящий момент будет равен разнице между скручивающим моментом шестерни А и моментами, приложенными к шестерням В и С, т. е.
МКРс = ТА — ТВ — ТС= 300 — 120 — 180 = 0 Нм, и величина этого момента будет распространяться на весь участок 4, расположенный за шестерней С.

Читайте также:  Кто построил дом из бруса своими руками

как строить эпюру крутящих моментов

Построив эпюру крутящих моментов, действующих в сечениях вала данной силовой передачи как показано на рис. 2, отмечаем, что максимальной величины — 300 Нм крутящий момент достигает на участке 2, т. е. этот участок и является критическим (наименее надежным).

Теперь попробуем изменить расположение шестерен на валу, разместив ведущую шестерню А между ведомыми шестернями В и С, как показано на рис. 3. Приложенные к шестерням вращающие моменты оставим без изменения и построим эпюру крутящих моментов для измененной конструкции (рис. 3).

Из полученной эпюры видно, что на участке 2 (между шестернями В и А) крутящий момент равен —120 Нм, на участке 3 — +180 Нм, а на участках 1 и 4 крутящие моменты равны нулю, как и в предыдущей конструкции. И если в рассмотренной ранее конструкции максимальный крутящий момент достигал 300 Нм, то теперь его величина снизилась до 180 Нм.
Рациональным размещением шестерен на валу силовой передачи мы смогли значительно уменьшить максимальный крутящий момент, возникающий в сечениях этого вала, повысив надежность передачи. При этом передаточные отношения и функционал самой передачи не изменились.

***

Материалы раздела «Деформация кручения»:

  • Понятие о кручении цилиндрического бруса (вала)
  • Построение эпюр крутящих моментов
  • Деформации и напряжения, возникающие при кручении
  • Расчеты на прочность и жесткость при кручении
  • Расчет цилиндрических винтовых пружин

Основные гипотезы и допущения Сопромата



Источник

Техническая механика

Сопротивление материалов

Построение эпюр в сопромате



Прикладное значение науки сопротивление материалов заключается в возможности определения основных критериев работоспособности деталей машин и различных конструкций – прочности, деформации и устойчивости.
как правильно строить эпюры
Применяя метод сечений в сочетании с приемами статики и других разделов прикладной механики, можно определить напряжения, возникающие в том или ином сечении бруса (детали, элемента конструкции), и, исходя из анализа полученного результата, сделать выводы о работоспособности этого бруса при приложении к нему расчетных нагрузок.
Именно напряжение является основным фактором, влияющим на прочностные характеристики элемента конструкции, а также его способность противостоять деформации. По этой причине в сопромате главной задачей, чаще всего, является определение напряжений, возникающих в том или ином сечении детали или элемента конструкции.

Для удобства анализа напряженности отдельных участков и сечений конструкции (бруса) используют графическое изображение нагрузок и напряжений в каждом сечении. Это позволяет визуально анализировать распределение нагрузок и напряжений по всей длине бруса, определять при этом наиболее нагруженные (критические) участки и сечения. Такие графические изображения нагрузок, напряжений, а также деформаций элементов конструкций называют эпюрами.

При анализе степени напряженности и деформирования элемента конструкции (детали, бруса) наиболее часто производят построение следующих типов эпюр:

  • эпюры внутренних сил (продольных или поперечных), действующих в сечениях бруса;
  • эпюры вращающих (крутящих) моментов;
  • эпюры изгибающих моментов;
  • эпюры напряжений (нормальных или касательных);
  • эпюры перемещений (удлинений, укорочений, прогибов и т. п.).

Иногда на одной эпюре показываются несколько внутренних силовых факторов (эпюра продольных и поперечных сил, эпюра изгибающего и вращающего моментов), но такие эпюры при сложных нагрузках и переменных сечениях бруса сложны для чтения.

Как упоминалось выше, наиболее важную информацию о прочностных характеристиках элемента конструкции (бруса), т. е. способности противостоять разрушению, можно получить, используя эпюры напряжений, а информацию о степени деформации под действием расчетной нагрузки – по эпюрам перемещений.
Эпюры внутренних усилий и моментов в большинстве случаев не дают полной информации о степени напряженности и деформирования отдельных сечений и участков бруса, а являются промежуточным звеном при построении эпюр напряжений и перемещений, особенно если брус имеет ступенчатую форму или переменное поперечное сечение по длине.

эпюра напряжений

***

Правила построения эпюр

При построении эпюр придерживаются определенных стандартных правил, позволяющих одинаково читать, истолковывать и анализировать эпюру всем участникам процесса конструирования изделия.

Построение эпюры начинают с изображения нулевой линии, которая символизирует линию бруса в ненапряженном состоянии. При этом, если брус имеет сложную пространственную форму, нулевая линия эпюры повторяет контуры центральной (осевой) линии бруса, и имеет такую же пространственную форму.

Нулевую линию эпюры обозначают названием и нулевым символом. Слева от нулевой линии указывается название эпюры (эпюра сил, моментов, напряжений и т. п.), справа от нулевой линии ставится цифра «0». При указании называния эпюры обычно используют символ изображаемой нагрузки, например, внутренние продольные силы чаще всего обозначаются буквой «N», поперечные – буквой «Q», эпюры изгибающих моментов – буквами «Mиз», эпюры вращающих моментов – буквами «Т» или «Mкр», эпюры напряжений – буквами «σ» или «τ» и т. п. Рядом с буквенным названием эпюры (или под ним) указывается единица измерения (ньютон, мегапаскаль, мм и т. п.).

Следующий этап построения эпюры – определение границ силовых участков бруса, т. е. таких участков, где внутренний силовой фактор в сечениях или деформация бруса изменяются по одной закономерности (или остаются постоянными). Как правило, границами силовых участков являются сечения, где приложена внешняя нагрузка или (и) площадь поперечного сечения бруса изменяется. В некоторых случаях, при построении эпюр брусьев сложной объемной формы, границы участков определяют аналитически. Границы силовых участков обозначаются тонкими вертикальными линиями, проведенными от изображения бруса через все эпюры.

Читайте также:  Построить дом из бруса самому этапы

Для оптимальной наглядности графика эпюры важно правильно выбрать масштаб изображаемого силового фактора, напряжения или деформации. Если масштаб окажется слишком мелким – эпюра будет трудна для чтения и анализа, если слишком крупным – она займет много места на чертеже.
Если учесть, что для одного бруса выполняют, как правило, несколько эпюр, расположенных одна под другой, то крупный масштаб не позволит выполнить построение эпюр на одном листе.
Для правильного выбора масштаба эпюры предварительно следует просчитать значение отображаемого фактора по всем контрольным сечениям бруса, и после этого определиться с масштабом.
Если, например, в результате расчетов окажется, что вся эпюра займет положительную область (над нулевой линией), то при построении графика эпюры это следует учесть.



Положительные значения фактора откладываются вверх от нулевой линии, отрицательные – вниз. Если на каком-либо участке силовой фактор равен нулю, эпюра совпадает с нулевой линией по всей длине этого участка. После построение внешнего контура эпюры на контрольных сечениях проставляются значения фактора (обычно на внешних углах эпюры), при этом знак фактора (плюс или минус) не указываются.
На положительной области (в самой широкой части) ставится знак «+» в кружке, а на отрицательной области – знак «» в кружке (см. примеры построения эпюр). Иногда знаки «+» и «» на эпюре указываются сверху и снизу цифры «0» (справа нулевой линии), тогда на площади графика эпюры эти знаки (в кружках) не ставятся.

По окончании построения эпюры по ее площади проводят тонкие вертикальные линии через равные промежутки. Эти линии символизируют сечения бруса. Иногда, в случае построения сложной пространственной эпюры, линии выполняют не вертикально, а в соответствии с проекционным направлением участка на графике эпюры.

построение эпюр в сопромате

***

Определение знака фактора на эпюре

При построении эпюр внутренних силовых факторов или деформаций необходимо правильно определять знак фактора на данном силовом участке бруса. Для этого следует пользоваться следующими общепринятыми правилами:

  • сжимающая продольная нагрузка считается отрицательной, растягивающая – положительной;
  • поперечная сила Q, направленная вниз считается отрицательной, вверх – положительной;
  • вращающий (крутящий) момент считается положительным, если он вращает «отсеченную» часть бруса против часовой стрелки, отрицательным – по часовой;
  • эпюра изгибающих моментов строится в соответствии с «правилом дождя». Это правило используется следующим образом: если в результате деформации от изгибающего момента исследуемое сечение прогнулось вниз, значит, эпюра имеет положительное значение (образовалась «воронка», в которой может задерживаться «дождевая вода»); если же балка прогнулась вверх, то эпюра имеет отрицательное значение («вода» будет скатываться с балки). Более подробно о знаках эпюр поперечных сил и изгибающих моментов здесь.

***

Особенности построения эпюр поперечных сил и изгибающих моментов

Для облегчения построения эпюр и контроля правильности графика следует запомнить ряд правил, вытекающих из теоремы Журавского:

На участке, где равномерно распределенная нагрузка q отсутствует, эпюра поперечных сил Q представляет собой прямую линию, параллельную нулевой линии (оси бруса), а эпюра изгибающих моментов Mиз – наклонную прямую.

В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть ступенчатый скачок на величину этой силы, а на эпюре Mиз – излом (изменение направления графика).

На участке действия равномерно распределенной нагрузки q эпюра Q представляет собой наклонную прямую, а эпюра Mиз – параболу, обращенную выпуклостью навстречу стрелкам, изображающим направление распределенной нагрузки.

Если эпюра Q на наклонном участке в каком-либо сечении пересекает нулевую линию эпюры, то в этом сечении на эпюре изгибающих моментов Mиз будет иметь экстремальное значение (минимальное или максимальное).

Если на границе действия распределенной нагрузки нет сосредоточенных сил, то наклонный участок эпюры Q соединяется с горизонтальным без «ступеньки», а параболический участок эпюры Mиз соединяется с наклонным участком плавно, без излома.

В сечениях, где к брусу приложены сосредоченные пары сил, на эпюре Mиз будут иметь место ступенчатые скачки на величину действующих внешних моментов, а эпюра Q изменения не претерпевает (приложенные к брусу изгибающие моменты не влияют на эпюру поперечных сил).

***

Примеры построения эпюр

правила построения эпюр в сопромате

***

Материалы раздела «Сопротивление материалов»:

  • Основные понятия и определения
  • Растяжение и сжатие
  • Смятие. Контактные напряжения
  • Деформация сдвига (среза)
  • Деформация кручения
  • Деформация изгиба



Правильные ответы на вопросы Теста № 7

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

3

2

3

2

2

3

1

2

1

2

Источник