Как построит сейсмоустойчивый дом
Мне нравится Какой дом выдержит землетрясение?
В данной статье мы поговорим на такие темы рубрики «Школа ремонта» , как:
1. Почему случаются землетрясения?
2. Амплитуда и магнитуда землетрясений
3. Какие факторы влияют на сейсмостойкость здания
4. Как ведут себя при землетрясениях дома типовой застройки?
5. Какие дома надежнее?
6. Какие дома лучше не строить в сейсмоопасных зонах?
7. Способы защиты и укрепления строений
Как известно, юго-восточные и восточные районы Казахстана расположены в сейсмически активной зоне. В последние годы после длительного затишья здесь начался период тектонической деятельности, и ученые предсказывают возможность сильных землетрясений. А в этом регионе находится большое число городов и поселков, и среди них южная столица – Алматы.
Насколько сейсмически надежны уже существующие и только строящиеся здесь здания? Какова их способность выдержать сильные подземные толчки? Эти вопросы интересуют сейчас многих жителей.
Почему случаются землетрясения?
Земная поверхность вовсе не такая прочная, как нам кажется. Она состоит из огромных тектонических плит, плавающих на вязком слое мантии. Эти плиты медленно смещаются относительно друг друга и «растягивают» верхний слой Земли.
Когда сила натяжения превышает предел прочности земной коры, в местах стыков возникает разрыв, его сопровождает серия сильных толчков и высвобождается огромное количество энергии. От места сдвига или «эпицентра землетрясения» в разные стороны распространяются колебания. Их называют сейсмическими волнами.
За год на планете происходит несколько миллионов очень слабых, двадцать тысяч умеренных и семь тысяч сильных землетрясений. Разрушительных насчитывают около 150. На территориях, где могут случиться вызванные ими катастрофы, расположено 2/3 всех городов и проживает почти половина населения Земли.
Почему-то землетрясения чаще начинаются ночью или на рассвете. В первые мгновения слышится подземный гул, и земля начинает дрожать. Затем идет череда толчков, при которых участки земли могут опускаться и подниматься. Все это длится несколько секунд, а иногда чуть более минуты. Но за такое короткое время землетрясение может принести огромные бедствия.
Ведь, в зависимости от географии местности и силы подземных ударов, его последствиями становятся оползни, камнепады, разломы, цунами и извержения вулканов, которые уничтожают все, что попадает в их зону действия. Опасность представляют землетрясения интенсивностью 7 баллов и выше. Что это за параметры и как измеряют разрушительную силу подземных толчков?
Амплитуда и магнитуда землетрясений
Амплитуда является качественной, а магнитуда количественной характеристикой землетрясения. Их часто путают.
12-балльная шкала интенсивности отображает степень разрушений при землетрясении в конкретной точке на поверхности земли. Интенсивность в 1 балл не ощущается человеком. Колебания в 2-3 балла уже заметны, особенно на верхних этажах зданий, где начинают раскачиваться люстры. Сотрясения в 4-5 баллов чувствуют почти все, от них и спящие просыпаются. Начинает звенеть посуда, лопаются стекла. Это уже умеренные землетрясения.
Сильными считаются толчки в 6 баллов. В зданиях сдвигается и падает мебель, люди в испуге выбегают на улицу. При землетрясении в 7-8 баллов трудно стоять на ногах. В стенах домов и на дорогах появляются трещины, падают перекрытия зданий и лестничные пролёты, возникают пожары и происходят оползни, рвутся подземные коммуникации. 9-ти балльное землетрясение называют опустошительным. Земля растрескивается, рушатся здания, возникает всеобщая паника.
При 10-11 баллах происходят уничтожающие землетрясения. В грунте появляются проломы до метра шириной. Повреждаются дороги, мосты, насыпи, плотины. Вода выплёскивается из водоемов. Все строения превращаются в руины. 12 баллов – это уже тотальная катастрофа. Земная поверхность меняется, ее пронизывают огромные разломы. Одни территории оседают и затапливаются, другие поднимаются на десятки метров. Изменяется ландшафт, образуются водопады и новые озёра, меняются русла рек. Большинство растений и животных погибают.
Вторая характеристика землетрясения – это магнитуда. Она была предложена в 1935 году сейсмологом Рихтером и показывает силу колебаний в эпицентре и высвобождаемую при этом энергию. Изменение значения магнитуды в большую сторону на единицу означает увеличение амплитуды колебаний в 10 раз, а количество высвобождаемой при этом энергии примерно в 32 раза. Здания могут пострадать уже при землетрясениях с магнитудой 5, большой ущерб им причиняют толчки силой 7, а катастрофические землетрясения превосходят магнитуду 8.
Эти две характеристики отличаются друг от друга. Интенсивность показывает масштаб приносимых разрушений, а магнитуда — силу и энергию колебаний. Так, при одинаковой магнитуде землетрясения, его интенсивность всегда уменьшается с ростом глубины и протяженности очага землетрясения. Устойчивость строений к подземным толчкам изучают, основываясь как раз на силе или магнитуде землетрясения.
Какие факторы влияют на сейсмостойкость здания
На устойчивость строений в период подземных толчков влияют как внешние условия, так и внутренние конструктивные особенности. Главным внешним фактором является тип колебаний грунта, на котором стоит здание. Он, в свою очередь, зависит от расстояния до эпицентра, глубины и магнитуды землетрясения, а также состава самого грунта. К внешним условиям устойчивости еще относят расположение самой конструкции на поверхности и находящиеся вблизи природные и искусственные сооружения.
Внутренними факторами считают общее техническое состояние и возраст дома, его конструктивные особенности и, примененный при строительстве, материал. Также имеют большое значение выполненные позже перепланировки и пристройки, без учета усиления конструкций. Все эти условия непременно повлияют на то, как здание перенесет землетрясение, и как это отразится на людях, находящихся в нем в момент ударов стихии.
При подземных сотрясениях здание приходит в движение вслед за перемещением грунта. Первым сдвигается фундамент, а верхние этажи по инерции сохраняются на месте. Чем резче толчки, тем больше разница в скорости смещения нижних этажей по отношению к верхним.
Если масса высотных зданий большая, то и толчки будут ощущаться сильнее. Чем больше площадь строения и чем меньше оно давит на грунт, тем большая вероятность у него уцелеть во время землетрясения. Если же при строительстве основание возводимого здания увеличить не получается, то надо обеспечивать его легкость за счет выбора строительных материалов.
Также влияние землетрясения на целостность всей конструкции находится в прямой в зависимости от характера движения различных частей здания и их устойчивости к резким колебаниям.
Из всего вышесказанного вывод таков: чтобы здание было надежным, нужно его правильно сконструировать, верно выбрать местоположение, и затем качественно построить.
Как ведут себя при землетрясениях дома типовой застройки?
Сейчас в городах большинство жилых домов представлены тремя типами: мелкоблочные, крупноблочные и крупнопанельные.
Мелкоблочные здания не очень надежны во время землетрясения. Уже при 7-8 баллах на верхних этажах повреждаются углы. У наружных продольных стен разлетаются стекла и выпадают окна. При 9 баллах углы разрушаются, вслед за ними начинают повреждаться стены. Наиболее безопасными считаются места пересечений внутренних несущих продольных стен с поперечными и так называемые «островки безопасности» у выхода из квартиры на лестничную клетку. При землетрясении следует находиться именно в этих местах, так как они остаются целыми при всех прочих разрушениях. Жители нижних этажей могут выбежать из здания, но только быстро, внимательно следя при этом за летящими сверху обломками. Особую опасность представляют тяжелые «козырьки» над дверями подъездов.
Крупноблочные дома достаточно хорошо выдерживают землетрясение. Но здесь также очень опасны углы здания верхних этажей. При сдвиге блоков могут частично падать плиты перекрытия и торцевые стены. Перегородки в этих домах, обычно, щитовые или деревянные, и их обрушения не приносят большого вреда. Травму могут причинить куски цементного раствора, выпадающие из швов плит перекрытия и большие куски штукатурки. Такие повреждения происходят при землетрясении в 7-8 баллов. Наиболее безопасные места — это те же двери на лестничную площадку, так как они все усилены железобетонными рамами.
Старые пятиэтажные крупнопанельные дома построены с расчетом устойчивости на 7-8 баллов, но практика показала, что они выдерживают и 9 баллов. Во время землетрясений на территории бывшего Советского Союза ни одно такое здание разрушено не было. Повреждаются только углы и появляются трещины у швов между зданиями. Так как эти дома достаточно надежны, то при землетрясении их лучше не покидать. Но при этом находиться надо подальше от наружных стен и окон на указанных выше «островках безопасности».
Какие дома надежнее?
Известно, что серьезные исследования жилого фонда Алматы проводились лет 15 назад. По их результатам, примерно 50 процентов сооружений в городе определили как сейсмостойкие, 25 процентов отнесли к не сейсмостойким, об остальных вердикта не вынесли. Они подлежат дальнейшему изучению.
В советское время многие здания в южной столице строились с учетом устойчивости к землетрясениям и проверялись специальным оборудованием. Это были 2-х этажные 8-ми, 12-ти и 24-квартирные дома.
С 1961 года Алматинский домостроительный комбинат начал выпускать сейсмостойкие типовые крупнопанельные дома. С семидесятых годов начали строить высотки до 12 этажей, в которых применяли новейшие, по тем временам, монолитные или сборные железобетонные конструкции. Все они проходили тщательную проверку виброустановками и, до настоящего времени, считаются надежными.
Также устойчивыми к колебаниям 8-9 баллов являются 1-2-этажные деревянные, щитовые и брусчатые дома. Уже проверено, что при таком землетрясении они сильно не разрушаются. Возникают лишь небольшие разрывы стен в углах и проседание грунта под зданием, но сами дома стоят. Хотя при толчках могут сильно раскачиваться перекрытия и стены, вывалиться куски штукатурки из стен и с потолка. В таких домах можно оставаться во время землетрясения, только находиться при этом подальше от наружных стен с окнами, от тяжелых шкафов и полок, например, спрятаться под крепкий стол.
Все же прочие дома, построенные в прежний период, нуждаются в дополнительном укреплении.
В 1998 году после землетрясений в южных государствах СНГ для сейсмически опасных районов Казахстана приняли новые, более жесткие нормы и правила строительства (СНиП). И сейчас они обязательны для всех застройщиков. Поэтому, возводимые новостройки должны отвечать всем современным требованиям сейсмостойкости.
Одна из новых технологий предлагает так называемые безригельные здания, не имеющие балок. Такие сооружения уже пользуются популярностью во всем мире. Их строительство обходится гораздо дешевле балочных домов. При правильном проектировании они намного устойчивее к разгулу подземной стихии.
Также очень популярными стали здания с большой площадью стеклянных покрытий. Оказывается, стекло является одним из наиболее подходящих материалов для строительства в сейсмоопасных зонах. Только стекло не обычное, а специальное сейсмопрочное, оно легче и крепче бетона. И обязательно вся конструкция должна быть выполнена с соблюдением СНИПов и только из качественных материалов.
Еще один новый тип домов хорошо выдерживает сейсмические нагрузки. Их называют деревянно-каркасными. При возведении таких зданий фундамент надежно крепится при помощи анкерных болтов. А сами деревянно-каркасные элементы обеспечивают прочность и пластичность стен, устойчивость перекрытий крыши и потолков, а места их стыков хорошо распределяют энергию землетрясения.
Сейчас в Казахстане строят очень много зданий с конструкциями, совсем не типовыми. Их обязательно надо исследовать. Поэтому вопрос, какие же сооружения, новые или старые, более надежны будет всегда открыт. Опасными могут стать и ветхие дома, и новостройки, не проверенные на сейсмоустойчивость.
Ведь проблема в том, что даже здания, выполненные по новым типовым проектам, иногда, в целях экономии, строят из дешевых и ненадежных строительных материалов. Так что стоит доверять только известным компаниям, которые возводят дома по всем правилам и проводят испытания на их прочность.
Какие дома лучше не строить в сейсмоопасных зонах?
Лёгкие деревянные, кирпичные и глинобитные конструкции часто разрушаются уже при первых толчках интенсивностью в 7-8 баллов. В Алматы в настоящее время здания с кирпичными стенами уже почти не строят, но продолжают сооружать дома из саманной кладки.
Для домов с кирпичными стенами и деревянными перекрытиями высотой в 2-3 этажа и с железобетонными перекрытиями высотой 2-4 этажа требуется обязательное усиление. Дома с саманными стенами усиливать бесполезно. Их надо сносить.
Ненадежны дома со стенами из малопрочных материалов, а также железобетонные каркасные сооружения. Это, как правило, общественные и административные здания.
Способы защиты и укрепления строений
Одно из несложных решений для укрепления уже существующих домов, было предложено академиком Жумабаем Байнатовым. Оно состоит в том, что по всему периметру здания копается ров, глубина которого равна глубине фундамента. Его заполняют использованными пластиковыми бутылками и засыпают землей. Если стоимость такого метода возложить на жителей многоквартирных домов, то каждой семье он обойдется примерно в 200 долларов. И дом станет гораздо надежнее, и в городе станет меньше мусора.
Еще одну идею выдвинули эксперты научного коллектива «Алматинской Строительной Компании «БЛОК». Суть в том, что в конструкции здания, там, где сходятся силовые панели и плиты перекрытия, создается так называемый «пространственный кинематический шарнир». Помимо увеличения устойчивости сооружения, это решение, в первую очередь, призвано спасти находящихся внутри людей.
По подсчетам, дома, построенные с использованием этой технологии, всего на 5-10% дороже обычных, а их устойчивость усиливается на 10 — 15%. Но это изобретение также можно использовать и для укрепления старых зданий, таких, как панельные «хрущевки». Их надстраивают до 7-9 этажных зданий, применяя новое конструктивное решение. В данной ситуации снова получается двойной эффект: старые дома получают дополнительную сейсмоустойчивость, а горожане — новые квартиры в укрепленном доме.
Еще одну интересную технологию строительства выдвинули французские ученые. Это так называемый «плащ-невидимка», который скрывает здание от землетрясения. Он состоит из системы 5-метровых скважин и специального материала, отражающего сейсмические волны.
При землетрясении часто большие повреждения получают многоэтажные здания, в цокольных этажах которых расположены гаражи и другие помещения с большим пустым пространством. Значит, таких конструкций лучше избегать. Сейчас принято для закрепления фундамента использовать болты и металлические крепежные соединения. При строительстве старых домов они не всегда использовались. Опыт показывает, что такие здания отходят от фундамента при землетрясении.
Еще в советское время были разработаны кинематические фундаменты. В Алматы по такой технологии построено несколько жилых домов. В них, во время землетрясения, жители должны ощущать только плавные покачивания, без резких толчков.
Еще один элемент здания, который необходимо укреплять – это дымоходные трубы, они очень неустойчивы к землетрясениям. Развал неармированных дымоходных труб очень часто приводит к повреждениям крыши и стен. Поэтому лучше, чтобы дымоходы были из армированных или других лёгких материалов.
При выборе строительной площадки предпочтение нужно отдавать скальным грунтам – фундамент сооружения на них более устойчивый. Здания не должны располагаться близко друг к другу, чтобы в случае их обрушения не задеть соседние постройки.
Обязательно в сейсмически опасных зонах высокие крепежные требования предъявляются к сооружениям водопровода, канализации и тепловым сетям.
Получается, что надежная защита зданий и сооружений от ударов возможных землетрясений зависит от общих усилий всего населения – ученых, властей, строителей и даже простых жителей городов и поселков. И высших сил, которые, будем надеяться, тоже защитят людей от тяжелых бедствий.
При использовании информации из данной статьи на других интернет ресурсах (сайтах, страниц социальных сетей, при комментировании вне данного ресурса и др.), убедительная просьба давать ссылку на данную страницу или 1stroitelny.kz Благодарим за соблюдение общеизвестных правил, принятых в интернет пространстве!
Полезную информацию о системах защиты для дома читайте в рубрике Статьи:
Приобрести необходимые материалы для строительства дома вы сможете, воспользовавшись каталогом нашего портала:
А также воспользоваться услугами по строительству:
Материал подготовлен редакцией портала https://www.1stroitelny.kz. Все вопросы и предложения высылайте на адрес редакции 1st_redakciya@mail.ru
Источник
Строительство в сейсмических районах России. Антисейсмические швы.
Строительство в сейсмических районах России. Антисейсмические швы.
Россия в целом характеризуется умеренной сейсмичностью. Исключение составляют регионы Северного Кавказа, юга Сибири и Дальнего Востока.
В европейской части России высокой сейсмичностью характеризуется Северный Кавказ, в Сибири – Алтай, Саяны, Байкал и Забайкалье, на Дальнем Востоке – Курило-Камчатский регион и остров Сахалин.
Треть всех землетрясений России приходится на Камчатку.
Строительство сейсмостойкого здания обходится дороже аналогичного по площади, высоте и планировке здания.
Проектированию сейсмостойких зданий имеет свою специфику.
Сейсмостойкий фундамент
При проектировании и строительстве жилых и общественных зданий и сооружений их следует разделять антисейсмическими швами в случаях, если:
— здание или сооружение имеет сложную форму в плане;
— смежные участки здания или сооружения имеют перепады высоты 5 м и более, а также существенные отличия друг от друга по жесткости и (или) массе.
Сейсмостойкий фундамент
Примечание
Антисейсмический пояс — железобетонная обвязка по каменным стенам, объединяющая их в пространственную конструкцию, способствующую совместной работе стен и перекрытий при сейсмическом воздействии
Сейсмостойкость здания/сооружения — способность объекта выполнять предназначенные функции после действия землетрясения расчетной интенсивности и повторяемости (отсутствие остановки производства и травматизма людей, предотвращение нежелательных экологических последствий и т.д.)
Допускается устройство антисейсмических швов между высокой частью и 1-2-этажными пристраиваемыми частями зданий путем шарнирного опирания перекрытия пристройки на консоль высокой части. Глубина опирания должна быть не менее суммы взаимных перемещений и минимальной глубины опирания с обязательным устройством аварийных связей.
Для случаев, когда устройство осадочного шва не требуется, допускается не устраивать антисейсмические швы между зданием и стилобатом при расчетном обосновании совместности их работы и выполнении соответствующих конструктивных мероприятий.
Не допускается устройство антисейсмических швов внутри помещений, которые предназначены для постоянного проживания или длительного нахождения МГН.
В одноэтажных зданиях высотой до 10 м при расчетной сейсмичности 7 баллов антисейсмические швы допускается не устраивать.
Антисейсмические швы должны разделять здания или сооружения по всей высоте. Допускается не устраивать шов в фундаменте, за исключением случаев, когда антисейсмический шов совпадает с осадочным.
Расстояния между антисейсмическими швами не должны превышать для зданий и сооружений: из стальных каркасов — по требованиям для несейсмических районов, но не более 150 м; из деревянных конструкций и мелких ячеистых блоков — 40 м при расчетной сейсмичности 7-8 баллов и 30 м — при расчетной сейсмичности 9 баллов. Для зданий иных конструктивных решений, приведенных в таблице 6.1, — 80 м при расчетной сейсмичности 7-8 баллов и 60 м — при расчетной сейсмичности 9 баллов.
Арпопояса
В случае превышения расстояний между антисейсмическими швами сверх установленных расчет сооружений следует выполнять с учетом волнового характера сейсмического воздействия, неоднородности и неравномерности сейсмического воздействия в плане сооружения по методикам, согласованным в установленном порядке.
Антисейсмические швы следует выполнять путем возведения парных стен или рам, либо рам и стен.
Ширину антисейсмического шва следует назначать по результатам расчетов, при этом ширина шва на каждом рассматриваемом уровне должна быть не менее суммы амплитуд колебаний смежных отсеков здания.
При высоте здания или сооружения до 5 м ширина такого шва должна быть не менее 30 мм. Ширину антисейсмического шва здания или сооружения большей высоты следует увеличивать на 20 мм на каждые 5 м высоты.
Конструкции примыкания отсеков здания или сооружения в зоне антисейсмических швов, в том числе по фасадам и в местах переходов между отсеками, не должны препятствовать их взаимным горизонтальным перемещениям.
Конструкция перехода между отсеками здания может быть выполнена в виде двух консолей из сопрягающихся блоков с устройством расчетного шва между концами консолей или переходов, надежно соединенных с элементами одного из смежных отсеков. Конструкцией их опирания на элементы другого отсека должны быть обеспечено взаимное расчетное смещение элементов и исключена возможность их обрушения и соударения при сейсмическом воздействии.
Переход через антисейсмический шов не должен быть единственным путем эвакуации из зданий или сооружений.
Лестничные площадки, располагаемые в уровне междуэтажных перекрытий, должны надежно связываться с антисейсмическими поясами или непосредственно с перекрытиями.
По всей длине стены в уровне плит покрытия и верха оконных проемов должны устраиваться антисейсмические пояса, соединенные с каркасом здания.
В зданиях с несущими стенами высотой два этажа и более кроме наружных продольных стен должно быть не менее одной внутренней несущей продольной стены.
В уровне перекрытий и покрытий, выполненных из сборных железобетонных элементов, по всем стенам без пропусков и разрывов должны устраиваться антисейсмические пояса из монолитного железобетона с непрерывным армированием. В зданиях с монолитными железобетонными перекрытиями, заделанными по контуру в стены, антисейсмические пояса в уровне этих перекрытий допускается не устраивать.
Плиты перекры тий (покрытий) должны соединяться с антисейсмическими поясами посредством анкеровки выпусков арматуры или сваркой закладных деталей.
Антисейсмические пояса верхнего этажа должны быть связаны с кладкой вертикальными выпусками арматуры.
Антисейсмический пояс (с опорным участком перекрытия) должен устраиваться, как правило, на всю ширину стены; в наружных стенах толщиной 500 мм и более ширина пояса может быть меньше на 100—150 мм.
Высота пояса должна быть не менее толщины плиты перекрытия, класс бетона — не ниже В15. Продольную арматуру антисейсмического пояса устанавливают по расчету, но не менее четырех стержней диаметром 10 мм при сейсмичности 7—8 баллов и не менее четырех стержней диаметром 12 мм — при 9 баллах.
Армирование кладки следует осуществлять сетками в горизонтальных швах и вертикальными отдельными стержнями или каркасами, размещаемыми в теле кладки или в штукатурных слоях. Вертикальная арматура должна быть непрерывной и соединяться с антисейсмическими поясами. Соединение вертикальной арматуры внахлест без сварки не допускается. При размещении вертикальной арматуры в штукатурных слоях она должна быть связана с кладкой хомутами, расположенными в горизонтальных швах кладки.
Вертикальные железобетонные включения (сердечники) должны устраиваться открытыми не менее чем с одной стороны и соединяться с антисейсмическими поясами.
Продольная арматура вертикальных обрамлений простенков должна быть надежно соединена с горизонтальным армированием хомутами, уложенными в горизонтальных швах кладки.
Блоки должны соединяться между собой сваркой закладных деталей или выпусков арматуры. Вертикальная арматура по торцам простеночных блоков, в том числе на глухих участках стен, должна быть соединена с выпусками арматуры из фундамента, вертикальной арматурой выше- и нижележащих простеночных блоков, в том числе блоков смежных этажей, и заанкерена в антисейсмическом поясе перекрытия верхнего этажа.
Запрещается уменьшать ширину антисейсмических швов, указанную в проекте.
Антисейсмические швы необходимо освобождать от опалубки и строительного мусора. Запрещается заделывать антисейсмические швы кирпичом, раствором, пиломатериалами и др. При необходимости антисейсмические швы можно закрывать фартуками или заклеивать гибкими материалами.
Пример сейсмостойкой гостиницы:
https://www.project.bulgaria-burgas.ru/project-hotel_48.htm
Источник